Fatty Acid Composition of Thalictrum L. Seed Oils

D. RANKOFF, A. POPOV, P. PANOV¹ and M. DALEVA, Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

The fatty acid composition of five representatives of the *Thalictrum* L. genus of the plant family *Ranunculaceae* has been investigated. The fatty acids include mainly acids with double bonds in the *trans*-5 position (about 60%). Although the main component of the fatty acids is a triene acid (*trans*-5,*cis*-9, *cis*-12-octadecatrienoic acid), the oils investigated are semidrying.

Introduction

M.O. Bagby et al. (1) have found that the fatty acids of oils of *Thalictrum polycarpum* include the *trans*-5-octadecenoic and *trans*-5,*cis*-9,*cis*-12-octadecatrienoic acids, unknown so far. M.K. Bhatty and B.M. Craig (2) have established that the oil of *Thalictrum venulosum* contains the unknown *trans*-5hexadecenoic and *trans*-5,*cis*-9-octadecatrienoic acids.

We investigated a larger number of oils of the *Thalictrum* genus in order to determine the composition of the unusual fatty acids and to see whether there are other unknown fatty acids in these representatives. We studied oils of five plant representatives from various places of Bulgaria differing in their climate: Balchik (lying at sea-level), Pirin (a mountain, more than 1900 m), Sofia and Lozen (at 500-800 m).

Experimental Procedures and Results

Oil Extraction

The seeds were extracted in a Soxhlet apparatus with petroleum ether (bp 30-60 C). The latter was then distilled off in a vacuum rotatory evaporator. The oils obtained showed the characteristic values given in Table I.

Preparation of Methyl Esters

Five-gram samples of the oils were refluxed 1 hr in 1 n alcoholic potassium hydroxide under an atmosphere of nitrogen; the unsaponifiables were removed and the total fatty acids were isolated. Their methyl esters were then obtained by boiling for 2 hr in methanol containing 0.5% sulfuric acid.

Gas Liquid Chromatography of the Methyl Esters

The gas liquid chromatographic (GLC) analyses of the various methyl ester samples were performed with a Perkin-Elmer model F-11 apparatus under the following conditions: 1.80 m by 4 mm diameter column containing 9% PEGS on Chromosorb W (acid washed) and operating at 195 C and at 18.5

¹ Botanical Institute, Bulgarian Academy of Sciences.

ml/min flow rate of N₂. The GLC analyses of the methyl esters of the mono- and dicarboxylic acids obtained after oxidation were performed with the same apparatus under the following conditions: 1.80 m by 4 mm diameter column containing 10% Apiezon L on Chromosorb W; linear programming, 80–195 C; rate, 2 C/min; 18.5 ml/min flow rate of N₂.

In the analyses of esters from transesterification of the oils, each sample showed seven well-defined peaks whose retention times were compared with those of five known methyl esters. The results are given in Table II.

All samples have the same components but differ only in their amounts.

Separation of the Methyl Esters of Three Representatives of the Thalictrum Genus by Chromatography on a Silica Gel-Silver Nitrate Column

The methyl esters of the total fatty acids from *Thalictrum minus, T. aquilegifolium* and *T. Glaucum* seed oils were separated into classes based on degree of unsaturation and configuration of the double bond according to B. de Vries (3) and M.K. Bhatty and B.M. Craig (2). We used the following procedure: a column (25 mm in diameter) with a cock was filled with silica gel silver nitrate (70 g) prepared according to de Vries (column length, 40 cm). The sample (about 0.5 g) was introduced into the column by means of a few milliliters of petroleum ether. The elution of the fractions was carried out as shown in Table III.

The fractions obtained were further studied by IR analysis and gas chromatography. The positions of the double bonds in the unsaturated acids were also determined using partial oxidation with performic acid according to F.D. Gunstone and P.J. Sykes (4). The results of this analysis are given in Table IV. The configuration of the *trans*-double bond in the diene and triene acids was determined by the IR spectra and by analogy with the data of M.K. Bhatty and B.M. Craig (2). The complete fatty acid composition of all samples is given in Table V.

Discussion

The investigations on the fatty acid composition of oils of five representatives of the *Thalictrum* genus have shown that about 60% of the fatty acids investigated have double bonds in the *trans*-5 position. The major component which determines the high iodine values of the oils is the *trans*-5,*cis*-9,*cis*-12octadecatrienoic acid. Nevertheless, the oils cannot be considered drying ones since our previous investigations have shown that they belong rather closely to the group of semidrying oils.

		Propert	TABLE I ies of Thalictru	m Oils			
No.	Representative of Thalictrum	Location	Per cent oil	n ²⁰ D	Iodine value (Kauf- mann)	Acid value	Unsapon- ifiables, %
1	T. adiantifolium T. Glaukum	Balchik Balchik	17.8 21.1	1,4786 1,4780	162.5 160.8	7.4 19.1	2.0
2	T. Glaukum T. minus	Balchik	15.0	1,4780	169.6	7.4	3.7 3.6
4	T. minus	Lozen	13.8	1,4790	163.2	13.4	2.6
5	\hat{T} , minus	Sofia	19.9	1.4790	173.0	6.8	1.9
6	T. foetidum	Vidin	15.0	1,4785	166.0	21.8	3.8
7	T. aquilegifolium	Pirin	29.3	1,4805	183.0	4.2	2.0

TABLE II GLC Peaks for Methyl Esters From Thalictrum Oils

		Thalictrum		Standard mixture						
Peak No.	Retention time relative to 16:0	ECLa	Fatty acids	Fatty acids	Retention time relative to 16:0	ECL ^a				
1	1.00	16.00	16:0	16:0	1.00	16.00				
$\overline{2}$	1.11	16.36	16:1							
3	1.78	18.00	18:0	18:0	1.78	18.00				
Ă	1.93	18.28	18:1	18:1 ∆ 9c	1.97	18.36				
5	2.15	18.66	18.2							
5		19.00	$18:2 \\ 18:2$	18:2 △ 9 <i>c</i> , 12 <i>c</i>	2.37	19.00				
0	2.37		10.2	18:3 $\triangle 9c$, 12c, 15c	2.92	19.70				
7	2.61	19.33	18:3	18:5 A9C, 12C, 15C	2.92	19.10				

* Equivalent chain length.

	Per cent fraction with respect to the initial methyl esters			•	Peak No.	Per cent composition by GLC						
Fraction	T. minus	T. aquile- gifolium	T. glaucum	Solvent	(in Table II)	T. minus	T. aquile- gifolium	T. glaucum				
I	9.1	7.2	6.5	Skellysolve "B"	1.3	$\begin{array}{cccccccc} 14:0 & 3.5 \\ 15:0 & 0.7 \\ 16:0 & 60.0 \\ 17:0 & 1.0 \\ 18:0 & 33.6 \\ 20:0 & 1.2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14:0 0.3 15:0 0.6 16:0 75.1 17:0 0.9 18:0 22.1 20:0 1.0				
II	12.0	6.5	16.5	10% Benzene ^a 20% Benzene ^a	2.4	14:1 0.9 16:1 Δt 10.0 18:1 Δt 89.1 20:1 Trace	14:0 0.5 16:1 7.2 18:1 92.3	14:1 0.3 16:1 7.0 18:1 92.7				
III	10.1	7.0	14.0	40% Benzene ^a	2.4	$\begin{array}{c} \textbf{16:1} \ \Delta c \ \ \textbf{25.0} \\ \textbf{18:1} \ \Delta c \ \ \textbf{75.0} \end{array}$	16:1 60.0 18:1 40.0	16:1 15.3 18:1 84.7				
IV	4.5	1.3	4.1	50% Benzenea	5.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrr} 18:2 & 3.8 \\ 18:2 & 96.2 \\ \end{array} $	$ \begin{array}{rrrr} 18:2 & 2.8 \\ 18:2 & 97.2 \\ \end{array} $				
v	21.0	21.4	18.5	Benzene 5% Ether ^b	6	18:2 ∆c,c 100	18:2 100	18:2 100				
VI	43.3	56.6	40.4	10% Ether ^b Ether	7	$18:3 \ \Delta c, t, c \ 100$	18:3 100	18:3 100				

^a In Skellysolve "F". ^b In benzene.

TABLE IV Products From Oxidative Cleavage of Fractions in Table III

T		Monocarboxylic acids, %									Dicarboxylic acids, %											
Frac- tion	Ca	C ₇	Cs	Ся	C10	Cm	C12	C13	C14	C15	C18	C17	C18	C5	Cø	C7	Cs	C9	C10	Сп	C12	C18
II						3.0		23.5			5.1		46 .0	22.4								
III				18.5		7.2					14.0		38.5	6.4				15.4				
IV	Trace			10.7				11.1				,	55 .0	10.5				12.7			1.0	,
v	8.0			13.8									61.0					9.3			7.9	
VI	5.7			7.4				9.9					54.0	3.1				9.5			10.4	

TABLE V

Fatty Acid Composition (%) of Oils of the Thalictrum Genus									
Fatty acids	Struc- ture	T. minus (Balchik)	T. minus (Lozen)	T. adianti- folium (Balchik)	T. minus (Sofia)	T. foetidum (Vidin)	T. glaucum (Balchik)	T. aquilegi- folium (Pirin)	
14:0		0.3	0.1	0.2	0.1	0.2	0.1	Trace	
16:0		5.4	5.1	6.7	6.9	3.2	4.8	3.7	
16:1	$\Delta 5t$	1.2	2.3	3.9	2.0	2.3	1.5	0.5	
16:1	$\Delta 5c$	2.5	2,3	3.9	2.0	2.3	1.3	2.8	
18:0		3.0	1.8	2.2	3.0	3.2	1.5	2.7	
18:1	$\Delta 5t$	10.7	21.8	20.1	22.8	21.8	15.0	6.6	
18:1	$\overline{\Delta 9c}$	7.6	21.8	20.1	22.8	21 8	12.6	4.3	
18:2	Δ5t. 9c	4.6	6.0	4.4	4.5	5.3	4.0	1.4	
18:2	Δ9c, 12c	22.0	16.6	17.6	20.5	20.0	18.5	21.3	
18:3	∆5t, 9c, 12c	42.6	46.2	44.9	40.1	43.9	40.7	56.7	
20:0		0.1	0.1	Trace	0.1	0.1	0.1	Trace	

It has also been established that the oils from the various representatives do not differ qualitatively from each other but the percentage of the trans-5, cis-9, cis-12-octadecatrienoic acid varies considerably (from 40.1% to 56.7%).

REFERENCES

- Bagby, M.O., C.R. Smith, Jr., K.L. Mikolajczak and I.A. Wolff, Biochemistry 1: 632 (1962).
 Bharty, M.K., and B.M. Oraig, Can. J. Biochem. 44: 311 (1966).
 de Vries, B., JAOCS 40: 184 (1963).
 Gunstone, F.D., and P.J. Sykes, J. Chem. Soc. 1962: 3058.

[Received March 11, 1971]